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Abstract—The protein folding problem involves predicting 

the shape of a protein based on the sequence of amino acids 

present in it. The shape of the protein is essential to predict the 

nature of the protein and the way it acts. This problem is a highly 

complex NP-Hard problem and hence meta-heuristics can prove 

vital in solving them. This paper compares the efficiency of two 

meta-heuristic algorithms: Particle Swarm Optimization and Bat 

Algorithm by implementing them on the Toy Model for protein 

folding to predict the shape of artificial sequences as well as real 

proteins. The bend angles and the protein energies are shown in a 

graphical manner for the two algorithms and compared. This 

study proves that Bat Algorithm is far more superior when 

compared to Particle Swarm Optimization for solving protein 

folding and further research can create a breakthrough in the 

protein folding problem. 

Keywords—Particle Swarm Optimization; Bat Algorithm; 

Protein Folding Problem; Toy Model; Meta-Heuristics  

I.  INTRODUCTION 

A protein‟s function depends on its shape. And the shape of 
that protein is known as a fold. A protein chain comprises of 
amino acids and there are 20 such possible amino acids that 
can make up a protein. Experimentally the shape of a protein 
can be determined using X-Ray Crystallography or NMR-
spectroscopy, but these methods are highly expensive and time 
consuming. Further, we also see that some proteins are hard to 
crystallize while spectroscopy only works on small proteins. 
Hence it becomes highly necessary to solve the protein folding 
problem (PFP) using computational methods. This has hence 
become one of the most essential problems in modern 
molecular biology. 

But solving such problems to generate a 3D structure is not 
an easy feat and is a very complicated process. PFP still 
remains an open ended question in molecular biology though 
various methods have emerged through the years. Researchers 
have thus found ways to predict the shapes using simpler 
models. Models such as diffusion collision model and 
hydrophobic collapse model had been proposed in 1976 and 
1984 respectively but they only supported single pathways for 
protein folding while it was experimentally established that 
different proteins took different pathways to form their shapes 
[1]. Hence PFP had largely been an experimental endeavor 
until the proposition of the energy landscape given by Joseph 

Bryngelson in 1995 [1]. This approach supported the “principle 
of minimum frustration” and is shown in Fig. 1.   

 

Fig.1 Energy Diagram 

This paved the way for new models that were based around 
the energy of the proteins. Two of the most famous and highly 
simplified models are the AB Model and the Toy Model. 

The AB Lattice Model grouped the 20 amino acids into two 
categories namely hydrophobic (H) i.e. non polar and 
hydrophilic (P) i.e. polar. The angle between two bonds was 
kept constant and the problem was to solve for the lattice 
conformation with the least energy for a reasonable definition 
of energy. 

The Toy Model was invented by Stillinger in 1993 and it 
also considered only two types of amino acids hydrophobic (A) 
and hydrophilic (B). In the toy model however the angle was 
not fixed and the molecules could freely move around. This 
made the toy model resemble a real protein more prominently 
than other models and unlike the lattice model it had free 
angles which made it more realistic. [2] 

Nature Inspired Algorithms (NIAs) are meta-heuristic 
methods which in the recent years have proved to be of use in a 
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wide variety of applications for optimization problems such as 
electric power systems. 

Conventional methods which have been practice for a long 
time like linear and dynamic programming generally do not 
work in NP-Hard optimization cases with many variables as 
they often get stuck at local optima. Hence NIAs are essential 
in solving the protein folding problem. 

Particle Swarm Optimization (PSO) is a meta-heuristic 
algorithm hat relies on the migratory nature of birds that follow 
the best bird along with the use of past memory to find the best 
solution. It was created by Kennedy and Eberhart in 1995 and 
relies on swarm behavior. It has been implemented in many 
fields in optimization. [3] 

Bat Algorithm (BA) is a very recent meta-heuristic 
algorithm that relies on the echolocation behavior of bats to 
find obstacles and catch their prey. It was created by Xin-She 
Yang and published in 2010. [4] 

 In this paper we compare the implementation and 
effectiveness of PSO and BA on the Toy Model of protein 
folding. Section II describes the Toy Model in detail. Section 
III gives a brief description of PSO. Section IV details BA. 
Section V shows the experiments and results. The last section 
concludes the paper. 

 

II. THE TOY MODEL 

 
The toy model was created by Stillinger in 1993 [2]. It 

supports multiple pathways based energy funneling as it is 
based around minimizing the energy of the proteins. This 
model classifies the 20 Amino Acids as being one of the two 
possible residues namely Hydrophobic (A) and Hydrophilic 
(B). Fig. 2 shows the basic structure for the peptide chain. As 
seen from the figure we can deduce that for a chain of length 
„n‟ we have „n-2‟ bond angles between them. Ranging from θ2 
to θn-1, where –π < θi < π. Positive angle implies a counter 
clockwise rotation and negative angles imply a clockwise 
rotation. 

In this model only Intra-Molecular forces are considered 
and no forces caused by two separate proteins are taken into 
account. A protein sequence is represented by the array 
notation [E1 ...…… En] such that Ei = 1 implies A and Ei = -1 
implies B. Then we have the energy given by equation (1): -  
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 Where, the first term represents the backbone bend 
potential while the second term represents the non bonded 
interaction potential. The distance lij is given by equation (2): 
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  While the backbone bend potential and non-bonded 
potential are calculated using the equation (3) and equation (4): 

𝑃𝑖 𝜃𝑖 =  
1

4
 1 − 𝑐𝑜𝑠𝜃𝑖                                    (3) 

 

𝑉2 𝑙𝑖𝑗 ,𝐸𝑖 ,𝐸𝑗  =  4 𝑙𝑖𝑗
−12 −  𝐶 𝐸𝑖 ,𝐸𝑗  𝑙𝑖𝑗

−6        (4) 

 

 Where, 

𝐶 𝐸𝑖 ,𝐸𝑗  =  
1

8
  1 + 𝐸𝑖 + 𝐸𝑗 + 5𝐸𝑖𝐸𝑗              (5) 

 

 Hence, we strive to minimize the energy function by PSO 
and BA over different sequences. Appendix A. depicts the 
MATLAB code for the energy function. 

 

Fig. 2 A Schematic diagram of a 9-mer 

III. PARTICLE SWARM OPTIMIZATION 

PSO was developed by Eberhart and Kennedy in 1995. It is 
a meta-heuristic algorithm that tries to use the nature of 
migrating animals such as a group of birds that are trying to 
find their destination. This algorithm itself is simple yet very 
powerful, it has been applied various fields and many 
researchers have created variations of it. [3] 

A. Behavior of Swarm & Standard PSO 

In PSO each individual solution is a „bird‟ among an entire 

flock of the bird population and is called a „particle‟. The steps 

involved in finding the optimized solution are as follows: 



 The bird population is first initialized and each 

bird or particle proceeds to move in a random 

direction with a particular velocity. 

 The fitness function is run on each particle to find 

the global best bird in the flock. 

 The personal best from every particle‟s individual 

past and the global bestfrom the entire flock are 

taken into consideration to find the new velocity 

of each particle. 

 The particles are moved to their new position and 

the steps are repeated till solution is reached. 

 

Thus PSO uses both the local optima along with global 

optima to reach the solution. It combines private thinking by 

considering the personal past best and social collaboration by 

following the best particle to reach the solution. 

This was a revolutionary approach since it avoids getting 

stuck in a local optima. The following sections show the 

formulation of velocity and discusses the algorithm in detail to 

help students in implementing this algorithm. 

 

B. Formulation  for the Algorithm 

 

The following diagram shows how an individual particle 

moves by taking into consideration its past best along with the 

global best: 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
Fig. 3 Vector Diagram of a particle for PSO 

 

Fig. 3 shows the movement of a single particle in a swarm 

of birds. Let, N be the number of random particles initialized. 

Xi is the current position of the i
th

 particle, Pi is calculated by 

finding personal best position reached in previous iterations, 

Vi is the bird‟s velocity and t represents the t
th

 cycle. 

 

The i
th

 particle is represented in N-Dimensional space by a 

point where N is the number of variables. Hence we have: 

 

 𝑋𝑖(𝑡) = (𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 ………………𝑥𝑖𝑛 )   
𝑃𝑖 𝑡 = (𝑝𝑖1 , 𝑝𝑖2 , 𝑝𝑖3 …………… . . . 𝑝𝑖𝑛 ) 

𝑉𝑖(𝑡) = (𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 ………………𝑣𝑖𝑛 )  

Let the g
th 

particle be the best fitness particle in each cycle 

and hence its position is given by Pg. Consequently each 

particle updates its position using a newly calculated velocity. 

From Fig.2 we can easily deduce the following [3]: 

 

𝑉𝑖 𝑡 = 𝜇 × 𝑉𝑖 𝑡 +  𝑘1 × 𝑟() ×  𝑃𝑖 𝑡 − 𝑋𝑖 𝑡  + 𝑘2 × 𝑅()

×  𝑃𝑔 𝑡 − 𝑋𝑖 𝑡                  (6) 

 

where,            - V max < = V i < = V max 

 

𝑋𝑖 𝑡 + 1 = 𝑋𝑖 𝑡 + 𝑉𝑖 𝑡 + 1        (7) 

 

Where, the constants k1 & k2 are known as learning factors 

such that k1, k2 > 0, rand ( ) and Rand ( ) are two methods that 

produce random number between [0, 1], Vmax is the maximum 

possible velocity [3],  is called the inertia weight which was 

proposed as an improvement to the PSO by Yang and Eberhart 

[5] to limit the effect of the previous velocities on the current 

velocity. Such that decreases linearly which balances out 

global search and local search components. Hence the global 

search begins with a larger weight and gradually reduces with 

time to increase the weight of local search. The second term in 

equation (1) denotes the cognitive part i.e. private thinking and 

the third term in equation (1) specifies the social collaboration 

globally. 

 

 

The main parameters that affect the optimization are: 

 Population Size (N) 

 Number of Cycles (t) 

 Max change of velocity (v) 

 Inertia weight () 

 Dimensions (n) 

 

For Protein folding we have „n‟ equal to the size of the 

protein. The population size is fixed at 20 while maximum 

cycles were kept at 1000. Appendix B. Gives the MATLAB 

code for PFP using PSO. 
 

IV. BAT ALGORITHM 

 

Bat algorithm (BA) is an algorithm that tries to imitate the 

way bats find their prey using echolocation. It was created by 

Yang in 2010 [4].  

A. Behavior of Bats & Standard BA 

This algorithm tries to use the behavior of bats trying to 

find their prey using echolocation which acts sonar. Bats emit 

sound waves which get reflected or bounced off the prey and 

bats then have to estimate the distance and speed at which the 

prey is moving. This concept is further expanded to fit into 

optimization problems in a way similar to PSO except here the 

parameters are not fixed and in fact keep on changing. The 

parameters involved are ri the pulse rate which lies between 

 

 



[0,1] and Ai which is the loudness of the wave sent by the bat 

to catch the prey and has max and min constraints on it. 

 

B. Key Features 

 Frequency Tuning: In BA frequencies are slowly 

varied like in other swarm based algorithms. Hence 

BA has same advantages of other similar swarm 

based methods. 

 Automatic Zooming: This involves zooming into a 

particular area where a promising solution is 

present. Hence it automatically switches a 

explorative mode to a more local mode and hence 

has a really fast convergance rate. 

 Parameter Control: Unlike other NIAs, here the 

parameters are not fixed i.e. they are varied as the 

iteration moves forward so we can easily switch 

from a more global approach to a more selective 

local approach 

 

C. Formulation for Algorithm 

The equation (8), equation (9) and equation (10) depict the 

formulae that govern the frequency which the bat emits and 

the velocity & position of the bat in a fashion similar to PSO. 

 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 +  𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛  × 𝑘                        (8) 

𝑣𝑖 𝑡 + 1 = 𝑣𝑖 𝑡 +  𝑥𝑖 𝑡 − 𝑥𝑔 𝑡  × 𝑓𝑖      (9) 

𝑥𝑖 𝑡 + 1 = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)                                 (10) 

 

 

where,  f i is the frequency being emitted by the i
th  

particle,  

f max and f min are the limits, kis a random vector between [0,1], 

vi  is velocity of the i
th

 particle,  xi is position and xg is the 

globally best particle. The algorithm is given in appendix B 

and the flowchart for the algorithm is shown in Fig. 4. And the 

value for Amplitude was taken constant [4].  

 

V. EXPERIMENTS AND RESULTS 

 

In this section we first fold Artificial Sequences of Protein 

and compare the energies to see if the algorithm is capable of 

stabilizing the artificial sequences. After which we try to find 

the shapes of 4 real protein sequences. 

 

A. Protein Folding on Artificial Sequences 

 

The parameters we used involved 1000 generations/ 

iterations for a population size of L=30. Each Sequence of 

Protein is conformed individually and we compare the 

energies to see if the algorithm is capable of stabilizing the 

artificial sequences [6] [7] [8]. We found out that the alpha 

helix structure and the beta sheet structure were formed for the 

cases AABABB and AAABAA respectively as shown in Fig. 

4(a) and Fig. 4(b). Table 1 shows the energy values and the 

time consumed using PSO and BA on the Toy Model. 

TABLE I.  ARTIFICIAL SEQUENCES 

S. 

n. 
Sequence 

Energy Value Φ 
 

Time (s) 

PSO BA PSO BA 

1 AAA -0.6582 −0.6582 2.440 1.531 

2 AAB 0.0322 0.0322 3.098 1.264 

3 ABA -0.6582 -0.6582 2.592 1.142 

4 ABB 0.0322 0.032227 3.604 1.172 

5 BAB -0.0303 -0.0302 3.339 1.257 

6 BBB -0.0302 -0.0302 2.563 1.200 

7 AAAA -1.6762 -1.6763 4.963 2.226 

8 AAAB -0.58527 -0.5852 3.868 2.201 

9 AABA -1.4510 -1.4510 4.104 2.838 

10 AABB 0.0672 0.0672 3.829 2.269 

11 ABAB -0.6493 -0.6493 5.884 2.676 

12 ABBA -0.0361 -0.0361 4.197 2.623 

13 ABBB 0.0047 0.0047 4.021 2.176 

14 BAAB 0.0617 0.0617 3.973 2.242 

15 BABB -0.0007 -0.0007 4.286 2.230 

16 BBBB -0.1395 -0.1397 5.639 2.996 

17 AAAAA -2.8410 -2.4664 6.773 4.468 

18 AAAAB -1.5894 -1.5894 5.995 5.555 

19 AAABA -2.4449 -2.4449 7.488 4.254 

20 AABAA -2.5317 -2.5317 7.357 5.250 

21 AABAB -1.3431 -1.3477 6.996 4.694 

22 AABBA -0.9160 -0.9266 7.827 4.631 

23 AABBB 0.0401 0.0401 8.276 3.838 

24 ABAAB -2.4449 -2.4449 8.248 5.430 

25 ABABA -2.2106 -2.2146 7.921 4.286 

26 ABABB -0.6168 -0.6168 7.009 4.862 

27 ABBAB 0.0264 0.0264 8.174 3.682 

28 ABBBA -0.3949 -0.3980 6.404 3.737 

29 ABBBB -0.0638 -0.0278 7.370 5.336 

30 BAAAB -0.5210 -0.5210 5.572 3.749 

31 BAABB 0.0962 0.0962 5.671 3.804 

32 BABAB -0.6480 -0.6480 7.603 4.501 

33 BABBB -0.1826 -0.1826 5.575 3.756 

34 BBABB -0.2245 -0.2402 5.531 3.774 

35 BBBBB -0.4483 -0.4526 5.755 3.832 

 



We can deduce from Table 1 that although both the 

algorithms produce almost identically stable peptides they still 

take different amounts of time to do the same task [9]. Bat 

Algorithm takes almost half the time it takes for PSO in most 

cases. Fig. 4(a) & 4(b) show the structural representation of 

two artificial peptide chains and the angles at which we have 

the bends as predicted by our implementation. 

 

 
Fig. 4 (a) Alpha Helix Structure shape for AABABB 

Angles: [1.0449 1.9496 -1.7886 -8.4053] 
 

 
Fig. 4 (b) Beta Sheet Structure shape for AAABAA 

Angles: [162.7518 30.2403 -14.4576 0.6102] 

 

B. Protein Folding on Real Protein Sequences 

The real protein taken into account is 1AGT. In this 

experiment we use the KD Method to distinguish the proteins 

into hydrophobic and hydrophilic. 

 

Briefly speaking, amino acids I, V, L, P, C, M, A, G are 

hydrophobic and D, E, F, H, K, N, Q, R, S, T, W, Y are polar. 

 

1AGT: As per the information from PDB Portal we have 

38 amino acids in 1AGT. 

 

GVPINVSCTG SPQCIKPCKD QGMRFGKCMN 

RKCHCTPK 

TABLE II.  REAL PROTEIN 1 AGT 

S.No

. 
Sequence 

Energy Value Φ Time (s) 

PSO BA PSO BA 

1 1AGT -19.050 -19.457 406.347 280.234 

      

 

 
Fig. 5 1 AGT Structure Prediction 

 

Angles: [-4.55178526963153 -0.123526045777103 -25.8199534387078
 6.63920975367892 -1.09293535796865 -2.63555371581972

 3.74878863837581 57.6400525371456 32.9924193188726

 -6.66763047268972 -0.106795394319625 -197.196926870800
 -75.6952126453075 -0.284339759593891 -0.172792665390074

 5.64269275758630 -42.0692023023288 -1.06207637972407

 -5.42386024192861 153.060932177181 -1.47567465595182
 -0.831207533329612 551.206178300402 19.9222429826848

 -0.542638835104338 19.4191739529587 0.0524139208320072

 35.7342178236110 560.532248849488 251.165887391045

 24.3935426840814 10.4612385657602 0.684007707130321

 109.058749615307 3348.53644463614 -42.9139370357563] 

 

Fig. 5 shows the structure of real protein 1 AGT along with 

the various angles for the bends as predicted by our 

implementation. The above results show that bat algorithm is 

superior to PSO even for conforming real proteins. As on 

comparing with PDB resource we find the angles and shapes 

resemble. Appendix C. depicts the plotting function we built 

to plot the shapes. 

CONCLUSION 

In this paper we were able to prove that Bat Algorithm is 

much faster when compared to PSO while conforming 

artificial sequences as well as real proteins. It was found that 

BA was almost twice as fast as PSO. Hence further research 

needs to take place in improving the bat algorithm for the 

protein folding problem.  

 

Further it should also be noted though that even though the 

Toy Model was able to produce almost identical structures and 

energy levels to real proteins it is still a simplified 2D version 

and there is a future scope in improving this algorithm and the 

protein folding problem as it can provide fast solutions to 

complex NP-Hard Problems. 



 

Appendix A. Energy Function 
function phi=energy(x) 

n=5; 

E = [1 1 1 1 -1]; 

y=zeros(1,n); 

y(1)=0; 

y(n)=0; 

for i=2:n-1 

y(i)=x(i-1); 

end 

a=0;b=0; 

function c=C(i,j) 

c=(1/8)*(1+E(i)+E(j)+(5*E(i)*E(j)));  

end 

function f0 = d(i,j) 

t=0; 

for k=i+1:j-1 

t=t+cos(Q); 

end 

t=(t+1)^2;      

s=0; 

for k=i+1:j-1 

s=s+sin(Q); 

end 

s=(s)^2;   

f0=(t+s)^(1/2); 

end 

function f1 = V1(y) 

f1=(1/4)*(1-cos(y)); 

end 

function f2 = V2(i,j) 

f2=4*((d(i,j)^(-12))-C(i,j)*(d(i,j)^(-6)));  

end 

for i = 2:n-1 

a=a+V1(y(i)); 

end 

for i = 1:n-2 

for j = i+2:n 

b=b+V2(i,j); 

end 

end  

phi=a+b; 

end 

 

Appendix B. PSO Code 
CostFunction = @(x) energy(x); 

nVar = <Number of bend angles>;   

VarSize = [1 nVar]; 

VarMin = -pi; 

VarMax =pi; 

MaxIt = 1000; 

nPop = 80; 

c1=2.8;  

c2=1.3;  

w=1;  

wdamp=0.99; 

empty_particle.Position = []; 

empty_particle.Velocity = []; 

empty_particle.Cost = []; 

empty_particle.Best.Position = [];  

empty_particle.Best.Cost = []; 

particle = repmat (empty_particle, nPop, 1); 

GlobalBest.Cost = inf;  

fori=1:nPop    

particle(i).Position=unifrnd(VarMin,VarMax,VarSize); 

particle(i).Best.Cost = particle(i).Cost; 

if particle(i).Best.Cost<GlobalBest.Cost 

GlobalBest = particle(i).Best; 

end 

end 

BestCosts = zeros(MaxIt,1) 

for it=1:MaxIt     

fori=1:nPop 

particle(i).Velocity=w*particle(i).Velocity+c1*rand(

VarSize).*(particle(i).Best.Position-

particle(i).Position)+c2*rand(VarSize).*(GlobalBest.

Position-particle(i).Position); 

particle(i).Position=particle(i).Position + 

particle(i).Velocity; 

particle(i).Cost=CostFunction(particle(i).Position); 

if particle(i).Cost<particle(i).Best.Cost   

particle(i).Best.Position=particle(i).Position; 

particle(i).Best.Cost=particle(i).Cost; 

if particle(i).Best.Cost<GlobalBest.Cost 

GlobalBest = particle(i).Best; 

end 

end 

end 

BestCosts(it) = GlobalBest.Cost; 

w = w * wdamp; 

end 

 

Appendix C. Plotting Function 
px=zeros(1,nVar+2); 

py=zeros(1,nVar+2); 

px(1)=0; 

py(1)=0; 

px(2)=1; 

py(2)=1; 

hold on; 

line([px(1),px(2)],[py(1) py(2)]); 

plot(px(1),py(1),'O'); 

plot(px(2),py(2),'O'); 

for i=3:nVar+2 

    px(i)=px(i-1)+cos(GlobalBest.Position(i-2)); 

    py(i)=py(i-1)+sin(GlobalBest.Position(i-2)); 

    line([px(i-1),px(i)],[py(i-1),py(i)]); 

    plot(px(i),py(i),'O'); 

end 
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